

Roll No.

ANNA UNIVERSITY (UNIVERSITY DEPARTMENTS)

B.E. /B.Tech (Full Time) - END SEMESTER EXAMINATIONS, NOV / DEC.2024

ELECTRONICS AND COMMUNICATION ENGINEERING BRANCH

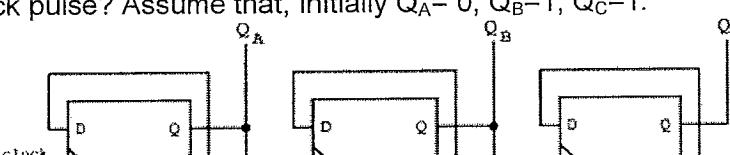
Semester III

EC23C13 DIGITAL ELECTRONICS AND SYSTEM DESIGN

(Regulation2023)

Time:3 hrs

Max. Marks: 100


CO1	Ability to apply Boolean algebra and simplification procedure in digital logic systems.
CO2	Ability to design combinational digital circuits using logic gates.
CO3	Ability to analyze and design synchronous sequential circuits.
CO4	Ability to analyze and design asynchronous sequential circuits.
CO5	Ability to design digital circuits using MOS and PLDs.

BL – Bloom's Taxonomy Levels

(L1-Remembering, L2-Understanding, L3-Applying, L4-Analysing, L5-Evaluating, L6-Creating)

PART- A(10 x 2 = 20 Marks)

QUESTION PAPER
(Answer all Questions)

Q.No.	Questions	Marks	CO	BL
1	If $(54)_x = (49)_{10}$, then x is equal to _____	2	1	2
2	Simplify the expression $xy + xy' + x'y$ using Boolean laws to minimum literals.	2	1	2
3	Write the necessary output expressions of 4-bit comparator.	2	2	2
4	Implement 8:1 Mux using 4:1 Mux and 2:1 Mux.	2	2	2
5	Construct a T flip flop from a D flip flop.	2	3	2
6	What is the output (Q_A, Q_B, Q_C) produced by the circuit in Fig.1 after 3 rd clock pulse? Assume that, initially $Q_A = 0, Q_B = 1, Q_C = 1$.	2	3	2
	 Fig.1			
7	Define essential hazard and how it is eliminated?	2	4	1
8	Outline the instability condition in asynchronous sequential circuits with an example.	2	4	1
9	What is Noise margin? How it is determined?	2	5	1
10	What is meant by CPLD and mention its important components.	2	5	1

PART- B(5 x 13 = 65 Marks)

PART-B(5 x 10 = 50 Marks)
(Restrict to a maximum of 2 subdivisions)

Q.No.	Questions	Marks	CO	BL
11 (a)	<p>Simplify the given Boolean function using K-map and implement the resultant expression using universal gates.</p> $f(w, x, y, z) = x'z' + y'z + w'xz + wyz' \quad d(w,x,y,z) = (x'+w)yz$ <p style="text-align: center;">OR</p>	13	1	3
11 (b)	<p>For this function, find a minimum sum-of-products solution, using the Quine McCluskey method.</p> $f(a, b, c, d) = \sum m(2,3,7,9,11,13) + \sum d(1, 10, 15).$	13	1	3

12 (a)	Realize a BCD to excess-3 code converter using a 4-to-10 decoder with active low outputs and a minimum number of gates.	9	2	3																																												
(ii)	Design a full adder circuit using 4 to 1 multiplexers with logic gates.	4	2	3																																												
OR																																																
12 (b)	Discuss the working principle of 4-bit Ripple carry adder and 4-bit carry look-ahead adder with neat circuits and analyze the carry propagation time of both the circuits to show the circuit limits/improves the speed.	13	2	3																																												
13 (a)	<p>(i) A sequential circuit with two D flip flops A and B, two inputs x and y, and one output Z is specified by the following next state and output equations.</p> $A(t+1) = x'y + xA$ $B(t+1) = xA + x'B \text{ and } Z = B$ <p>Obtain the logic diagram, state table and state diagram.</p>	7	3	4																																												
(ii)	<p>Reduce the state table shown in Fig.2 and verify the output sequences of original and reduced state tables with input sequence of 10110011. Draw the reduced state diagram.</p> <table border="1" style="border-collapse: collapse; text-align: center;"> <tr> <th colspan="2" style="border-bottom: 1px solid black;">Present state</th> <th colspan="2" style="border-bottom: 1px solid black;">X (Input)</th> <th rowspan="2" style="border-bottom: 1px solid black; vertical-align: middle;">Next state, Z (Output)</th> </tr> <tr> <th colspan="2"></th> <th style="border-bottom: 1px solid black;">0</th> <th style="border-bottom: 1px solid black;">1</th> </tr> <tr> <td style="border-right: 1px solid black;">A</td> <td>A,0</td> <td>B,0</td> <td></td> <td></td> </tr> <tr> <td style="border-right: 1px solid black;">B</td> <td>C,0</td> <td>D,0</td> <td></td> <td></td> </tr> <tr> <td style="border-right: 1px solid black;">C</td> <td>A,0</td> <td>D,0</td> <td></td> <td></td> </tr> <tr> <td style="border-right: 1px solid black;">D</td> <td>E,0</td> <td>F,1</td> <td></td> <td></td> </tr> <tr> <td style="border-right: 1px solid black;">E</td> <td>A,0</td> <td>F,1</td> <td></td> <td></td> </tr> <tr> <td style="border-right: 1px solid black;">F</td> <td>G,0</td> <td>F,1</td> <td></td> <td></td> </tr> <tr> <td style="border-right: 1px solid black;">G</td> <td>A,0</td> <td>F,1</td> <td></td> <td></td> </tr> </table> <p>Fig.2</p>	Present state		X (Input)		Next state, Z (Output)			0	1	A	A,0	B,0			B	C,0	D,0			C	A,0	D,0			D	E,0	F,1			E	A,0	F,1			F	G,0	F,1			G	A,0	F,1			6	3	4
Present state		X (Input)		Next state, Z (Output)																																												
		0	1																																													
A	A,0	B,0																																														
B	C,0	D,0																																														
C	A,0	D,0																																														
D	E,0	F,1																																														
E	A,0	F,1																																														
F	G,0	F,1																																														
G	A,0	F,1																																														
OR																																																
13 (b)	Develop a synchronous 3-bit up/down counter using J-K flip-flops. The counter should count up when a U/D control input is 1 and count down when the control input U/D is 0.	13	3	4																																												
14 (a)	<p>Draw the logic diagram for the expression $F = AB' + BC$.</p> <ol style="list-style-type: none"> Identify the type of static hazard by analyzing the circuit with necessary input variation. Write down the product-of-sums expression for the above expression. Do the same as given in (i). Find the way(s) to remove the hazards. 	13	4	4																																												
14 (b)	Find the critical race-free state assignment and design an asynchronous sequential circuit for the flow table shown in Fig.3 with and without SR NAND latches and gates.	13	4	4																																												
	<table border="1" style="border-collapse: collapse; text-align: center;"> <tr> <th style="border-bottom: 1px solid black;">State</th> <th colspan="4" style="border-bottom: 1px solid black;">Next State $X_1X_2 = 00\ 01\ 10\ 11$</th> <th rowspan="2" style="border-bottom: 1px solid black; vertical-align: middle;">Z</th> </tr> <tr> <td style="border-right: 1px solid black;">S_0</td> <td style="border-right: 1px solid black;">S_0</td> <td style="border-right: 1px solid black;">S_1</td> <td style="border-right: 1px solid black;">S_2</td> <td style="border-right: 1px solid black;">S_0</td> <td></td> </tr> <tr> <td style="border-right: 1px solid black;">S_1</td> <td style="border-right: 1px solid black;">S_0</td> <td style="border-right: 1px solid black;">S_1</td> <td style="border-right: 1px solid black;">S_2</td> <td style="border-right: 1px solid black;">S_1</td> <td></td> </tr> <tr> <td style="border-right: 1px solid black;">S_2</td> <td style="border-right: 1px solid black;">S_0</td> <td style="border-right: 1px solid black;">S_1</td> <td style="border-right: 1px solid black;">S_2</td> <td style="border-right: 1px solid black;">S_2</td> <td>1</td> </tr> </table> <p>Fig.3</p>	State	Next State $X_1X_2 = 00\ 01\ 10\ 11$				Z	S_0	S_0	S_1	S_2	S_0		S_1	S_0	S_1	S_2	S_1		S_2	S_0	S_1	S_2	S_2	1																							
State	Next State $X_1X_2 = 00\ 01\ 10\ 11$				Z																																											
S_0	S_0	S_1	S_2	S_0																																												
S_1	S_0	S_1	S_2	S_1																																												
S_2	S_0	S_1	S_2	S_2	1																																											

15 (a)	Draw a 4-input CMOS NAND circuit. Explain the operation denoting ON and OFF status of individual transistors under various input combinations. Repeat the same for a four-input CMOS NOR gate.	13	5	3
OR				
15 (b)	Design a PLA circuit with PLA table for the following equations: $X = AB'D + A'C' + BC + C'D'$ $Y = (A'C' + AC + C'D')$ $Z = CD + A'C' + AB'D$	13	5	3

PART- C(1x 15=15Marks)

(Q.No. 16 is compulsory)

Q.No.	Questions	Marks	CO	BL
16. (i)	Implement the following four output expressions with three half adders: $D = A \oplus B \oplus C$ $E = A'BC + AB'C$ $F = ABC' + (A' + B')C$ $G = ABC$	6	2	5
(ii)	Design an asynchronous sequential circuit that has two inputs X_1 and X_2 and one output Z . The output is to remain 0 as long as X_1 is 0. The first change in X_2 that occurs, while X_1 is 1, will cause Z to be a 1. The output Z is to remain a 1 until X_1 returns to 0. a) Construct a Primitive Flow Table b) Reduce the Primitive Flow Table using implication table and draw the reduced Flow table.	9	4	6